Copied to
clipboard

G = C42.10C23order 128 = 27

10th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.10C23, C8⋊Q83C2, C4⋊C4.45D4, (C2×D4).34D4, (C2×Q8).34D4, C4⋊Q8.40C22, C8⋊C4.96C22, C22.191C22≀C2, C2.23(D4.9D4), C2.25(D4.8D4), C42.C2.8C22, C42.2C225C2, C4.4D4.13C22, C2.23(D4.10D4), C42.C22.2C2, C42.30C2216C2, C42.28C22.3C2, C22.57C24.2C2, (C2×C4).223(C2×D4), SmallGroup(128,396)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.10C23
C1C2C22C2×C4C42C42.C2C22.57C24 — C42.10C23
C1C22C42 — C42.10C23
C1C22C42 — C42.10C23
C1C22C22C42 — C42.10C23

Generators and relations for C42.10C23
 G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=e2=a2b2, ab=ba, cac-1=dad-1=a-1, eae-1=a-1b2, cbc-1=ebe-1=b-1, dbd-1=a2b-1, dcd-1=ac, ece-1=bc, de=ed >

Subgroups: 208 in 92 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×Q8, C2×Q8, C8⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4⋊Q8, C4⋊Q8, C42.C22, C42.2C22, C42.28C22, C42.30C22, C8⋊Q8, C22.57C24, C42.10C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, D4.8D4, D4.9D4, D4.10D4, C42.10C23

Character table of C42.10C23

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F
 size 111184448888816888888
ρ111111111111111111111    trivial
ρ21111-1111-111-1-11-1-1-11-11    linear of order 2
ρ31111111111111-1-1-1-1-1-1-1    linear of order 2
ρ41111-1111-111-1-1-1111-11-1    linear of order 2
ρ51111-11111-1-11-11-11-1-11-1    linear of order 2
ρ611111111-1-1-1-1111-11-1-1-1    linear of order 2
ρ711111111-1-1-1-11-1-11-1111    linear of order 2
ρ81111-11111-1-11-1-11-111-11    linear of order 2
ρ9222222-2-20000-20000000    orthogonal lifted from D4
ρ1022220-22-202-2000000000    orthogonal lifted from D4
ρ112222-22-2-2000020000000    orthogonal lifted from D4
ρ1222220-22-20-22000000000    orthogonal lifted from D4
ρ1322220-2-22200-200000000    orthogonal lifted from D4
ρ1422220-2-22-200200000000    orthogonal lifted from D4
ρ1544-4-4000000000000020-2    symplectic lifted from D4.10D4, Schur index 2
ρ1644-4-40000000000000-202    symplectic lifted from D4.10D4, Schur index 2
ρ174-44-400000000002i0-2i000    complex lifted from D4.9D4
ρ184-4-44000000000002i00-2i0    complex lifted from D4.8D4
ρ194-44-40000000000-2i02i000    complex lifted from D4.9D4
ρ204-4-4400000000000-2i002i0    complex lifted from D4.8D4

Smallest permutation representation of C42.10C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 13 5)(2 17 14 6)(3 18 15 7)(4 19 16 8)(9 62 54 57)(10 63 55 58)(11 64 56 59)(12 61 53 60)(21 29 35 26)(22 30 36 27)(23 31 33 28)(24 32 34 25)(37 44 47 52)(38 41 48 49)(39 42 45 50)(40 43 46 51)
(1 39 3 37)(2 38 4 40)(5 42 7 44)(6 41 8 43)(9 36 11 34)(10 35 12 33)(13 45 15 47)(14 48 16 46)(17 49 19 51)(18 52 20 50)(21 53 23 55)(22 56 24 54)(25 57 27 59)(26 60 28 58)(29 61 31 63)(30 64 32 62)
(1 31 15 26)(2 30 16 25)(3 29 13 28)(4 32 14 27)(5 35 18 23)(6 34 19 22)(7 33 20 21)(8 36 17 24)(9 50 56 44)(10 49 53 43)(11 52 54 42)(12 51 55 41)(37 64 45 57)(38 63 46 60)(39 62 47 59)(40 61 48 58)
(1 26 15 31)(2 32 16 27)(3 28 13 29)(4 30 14 25)(5 21 18 33)(6 34 19 22)(7 23 20 35)(8 36 17 24)(9 46 56 38)(10 39 53 47)(11 48 54 40)(12 37 55 45)(41 57 51 64)(42 61 52 58)(43 59 49 62)(44 63 50 60)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,62,54,57)(10,63,55,58)(11,64,56,59)(12,61,53,60)(21,29,35,26)(22,30,36,27)(23,31,33,28)(24,32,34,25)(37,44,47,52)(38,41,48,49)(39,42,45,50)(40,43,46,51), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (1,31,15,26)(2,30,16,25)(3,29,13,28)(4,32,14,27)(5,35,18,23)(6,34,19,22)(7,33,20,21)(8,36,17,24)(9,50,56,44)(10,49,53,43)(11,52,54,42)(12,51,55,41)(37,64,45,57)(38,63,46,60)(39,62,47,59)(40,61,48,58), (1,26,15,31)(2,32,16,27)(3,28,13,29)(4,30,14,25)(5,21,18,33)(6,34,19,22)(7,23,20,35)(8,36,17,24)(9,46,56,38)(10,39,53,47)(11,48,54,40)(12,37,55,45)(41,57,51,64)(42,61,52,58)(43,59,49,62)(44,63,50,60)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,62,54,57)(10,63,55,58)(11,64,56,59)(12,61,53,60)(21,29,35,26)(22,30,36,27)(23,31,33,28)(24,32,34,25)(37,44,47,52)(38,41,48,49)(39,42,45,50)(40,43,46,51), (1,39,3,37)(2,38,4,40)(5,42,7,44)(6,41,8,43)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (1,31,15,26)(2,30,16,25)(3,29,13,28)(4,32,14,27)(5,35,18,23)(6,34,19,22)(7,33,20,21)(8,36,17,24)(9,50,56,44)(10,49,53,43)(11,52,54,42)(12,51,55,41)(37,64,45,57)(38,63,46,60)(39,62,47,59)(40,61,48,58), (1,26,15,31)(2,32,16,27)(3,28,13,29)(4,30,14,25)(5,21,18,33)(6,34,19,22)(7,23,20,35)(8,36,17,24)(9,46,56,38)(10,39,53,47)(11,48,54,40)(12,37,55,45)(41,57,51,64)(42,61,52,58)(43,59,49,62)(44,63,50,60) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,13,5),(2,17,14,6),(3,18,15,7),(4,19,16,8),(9,62,54,57),(10,63,55,58),(11,64,56,59),(12,61,53,60),(21,29,35,26),(22,30,36,27),(23,31,33,28),(24,32,34,25),(37,44,47,52),(38,41,48,49),(39,42,45,50),(40,43,46,51)], [(1,39,3,37),(2,38,4,40),(5,42,7,44),(6,41,8,43),(9,36,11,34),(10,35,12,33),(13,45,15,47),(14,48,16,46),(17,49,19,51),(18,52,20,50),(21,53,23,55),(22,56,24,54),(25,57,27,59),(26,60,28,58),(29,61,31,63),(30,64,32,62)], [(1,31,15,26),(2,30,16,25),(3,29,13,28),(4,32,14,27),(5,35,18,23),(6,34,19,22),(7,33,20,21),(8,36,17,24),(9,50,56,44),(10,49,53,43),(11,52,54,42),(12,51,55,41),(37,64,45,57),(38,63,46,60),(39,62,47,59),(40,61,48,58)], [(1,26,15,31),(2,32,16,27),(3,28,13,29),(4,30,14,25),(5,21,18,33),(6,34,19,22),(7,23,20,35),(8,36,17,24),(9,46,56,38),(10,39,53,47),(11,48,54,40),(12,37,55,45),(41,57,51,64),(42,61,52,58),(43,59,49,62),(44,63,50,60)]])

Matrix representation of C42.10C23 in GL8(𝔽17)

00100000
00010000
160000000
016000000
00000010
00000001
00001000
00000100
,
01000000
160000000
00010000
001600000
00000100
000016000
00000001
000000160
,
1522150000
2215150000
2152150000
151515150000
00001211612
000015121
00001612121
000012115
,
1300100000
013700000
010400000
70040000
000010100
00001700
000000101
00000017
,
1300100000
041000000
071300000
70040000
000071600
0000161000
000000101
00000017

G:=sub<GL(8,GF(17))| [0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[15,2,2,15,0,0,0,0,2,2,15,15,0,0,0,0,2,15,2,15,0,0,0,0,15,15,15,15,0,0,0,0,0,0,0,0,12,1,16,12,0,0,0,0,1,5,12,1,0,0,0,0,16,12,12,1,0,0,0,0,12,1,1,5],[13,0,0,7,0,0,0,0,0,13,10,0,0,0,0,0,0,7,4,0,0,0,0,0,10,0,0,4,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,1,7,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,1,7],[13,0,0,7,0,0,0,0,0,4,7,0,0,0,0,0,0,10,13,0,0,0,0,0,10,0,0,4,0,0,0,0,0,0,0,0,7,16,0,0,0,0,0,0,16,10,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,1,7] >;

C42.10C23 in GAP, Magma, Sage, TeX

C_4^2._{10}C_2^3
% in TeX

G:=Group("C4^2.10C2^3");
// GroupNames label

G:=SmallGroup(128,396);
// by ID

G=gap.SmallGroup(128,396);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,456,422,352,1123,570,521,136,3924,1411,998,242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=e^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,e*a*e^-1=a^-1*b^2,c*b*c^-1=e*b*e^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.10C23 in TeX

׿
×
𝔽